Hydraulic power units
Mec Fluid 2 è nata nel 1983, come azienda dedicata alla commercializzazione di prodotti pneumatici delle più qualificate marche nazionali; verso la fine degli anni ’80 ha iniziato la sua attività, volta prevalentemente alla produzione di particolari standard per la componentistica pneumatica. Allargatasi anche ai prodotti speciali, la produzione è attualmente l’attività dominante; adottando soluzioni tecniche appositamente studiate in funzione della peculiarità dei prodotti, Mec Fluid 2 è riuscita a garantire qualità nelle prestazioni a prezzi competitivi.

Grazie ad una costante opera di investimenti, Mec Fluid 2, mantenendo il proprio parco macchine all’avanguardia, impiegando operatori specializzati, attrezzature e sistemi metrologici di collaudo ai massimi livelli tecnologici, è tesa a soddisfare le più svariate richieste di un mercato che è sempre più competitivo e selettivo. Sempre attenta a nuove necessità e richieste, l’Azienda si è posta come obiettivi primari la qualità del prodotto e la soddisfazione del cliente.

Mec Fluid 2 was born in 1983, dealing in wholesale trade of pneumatic equipments of some of the most qualified national brands; around the end of the ’80s, it began its activity, involved mostly in the production of standard pneumatic equipments. Spread out in special products too, production is the main activity at the moment; adopting technical solutions specially studied according to the characteristics of each product, Mec Fluid 2 has succeeded in assuring quality in the services at competitive prices. By investing steadily, by keeping in the van its own park of CNC machines, by making use of specialized operators, tools and systems of measurement for testing correspondent to the maximum technological level, Mec Fluid 2 is dedicated to satisfy the most various requests of a market which is more and more competitive and selective. Always paying attention to new needs and requests, the Company has chosen as main targets the quality of the product and the customer satisfaction.
La personalizzazione è la nostra forza

To personalize is our power

Mec Fluid 2, nata come azienda per la commercializzazione di componenti pneumatici, ha saputo porsi in maniera dinamica e reattiva d’innanzi alle esigenze di mercato, che richiedono sempre più personalizzazioni alle applicazioni dei prodotti. E’ quindi proprio la realizzazione di componenti speciali e personalizzati il punto di forza dell’azienda. Per mezzo di un ufficio tecnico dinamico, macchine CNC ad elevato contenuto tecnologico e un efficace controllo qualità per tutta la durata del processo produttivo, è possibile la realizzazione, in stretta collaborazione con i propri clienti, di tutti quei prodotti speciali utilizzati in numerosi settori industriali.
POWER UNITS

HYDRAULIC POWER PACKS

Working constraints

Temperature
80°C (with steel tanks)
70°C (with PE tanks)

Viscosity
min 12 mm²/s
max 80 mm²/s
max viscosity at start up 500 mm²/s

Pressure
maximum pressure depending on pump and relief valve used

Direction for use

Installation
There are no limits in mounting positions, just avoid any installation that could compromise pump’s suction.
When power module is to be fitted on structures liable to vibrations, it is better to place vibration-clamping blocks in fixing points.

Cleaning and maintenance
You have to substitute the oil after 100 hours of duty the first time, and then every 3000 hours of duty (in any case at least once a year)

Wiring and starting
The starting must assure proper pump direction of rotation. It is strictly forbidden to invert the direction of rotation.
Central manifold “A0” type assembly
Central manifold “A1” type assembly
POWER UNITS

HYDRAULIC POWER PACKS

Central manifold “B” type assembly
Single gear pumps

To mount the pump: n. 2 M8 screws, with a torque wrench setting fixed at 23 ± 2.4 Nm.

<table>
<thead>
<tr>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>G108</td>
</tr>
<tr>
<td>G111</td>
</tr>
<tr>
<td>G113</td>
</tr>
<tr>
<td>G116</td>
</tr>
<tr>
<td>G121</td>
</tr>
<tr>
<td>G126</td>
</tr>
<tr>
<td>G132</td>
</tr>
<tr>
<td>G137</td>
</tr>
<tr>
<td>G142</td>
</tr>
<tr>
<td>G148</td>
</tr>
<tr>
<td>G158</td>
</tr>
<tr>
<td>G179</td>
</tr>
</tbody>
</table>
POWER UNITS

HYDRAULIC POWER PACKS

Type

VMDC35

Minimum setting pressure

<table>
<thead>
<tr>
<th>Flow [l/min]</th>
<th>0</th>
<th>7</th>
<th>14</th>
<th>21</th>
<th>28</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>P [bar]</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow [l/min]</th>
<th>7</th>
<th>14</th>
<th>21</th>
<th>28</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>P [bar]</td>
<td>0</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
</tr>
</tbody>
</table>

Pressure vs flow

<table>
<thead>
<tr>
<th>Flow [l/min]</th>
<th>7</th>
<th>14</th>
<th>21</th>
<th>28</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>P [bar]</td>
<td>0</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
</tr>
</tbody>
</table>

EXAMPLE ORDER CODE:

VMDC 35 B 1 0

Type valve VMDC

Nominal size: 35 = 35ND

Series

B = std

Adjusting device:

1 = screw (std)
2 = handknob
3 = with cap
4 = plastic seal

Working range:

A = 20 = 100 bar
B = 20 = 200 bar
C = 35 = 350 bar

Note: Values measured on valve alone (no cavity). Pressure drop may change depending on fluid viscosity and temperature.
POWER UNITS

HYDRAULIC POWER PACKS

TYPE

VMDC20

MOUNTING CAVITY

Note: cavities 3, 4 and 6 are present on central manifold type B only.

DIRECT ACTING RELIEF VALVE

- **Nominal size:** 20
- **Type valve:** VMDC
- **Series:** 0 (std)
- **Working range:** 250 = 15 ÷ 260 bar

Main features

- **Max pressure:** 450 bar
- **Max flow:** 20 l/min
- **Weight:** 53 g

Hydraulic symbol

- P
- T

Pressure vs flow

Note: Values measured on valve alone (no cavity). Pressure drop may change depending on fluid viscosity and temperature

EXAMPLE ORDER CODE:

VMDC 20/250 0

Type valve = VMDC
Nominal size: 20
Series 0 (std)
Working range: 250 = 15 ÷ 260 bar
POWER UNITS

HYDRAULIC POWER PACKS

TYPE

CSC

MOUNTING CAVITY

3

Note: cavities 3, 4 and 6 are present on central manifold type B only.

PRESSURE COMPENSATED FLOW CONTROL VALVE

Hydraulic symbol

A B

Main features

<table>
<thead>
<tr>
<th>Max pressure</th>
<th>250 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max flow</td>
<td>15 l/min</td>
</tr>
<tr>
<td>Weight</td>
<td>0.19 Kg</td>
</tr>
</tbody>
</table>

Pressure drop diagram

Flow from A to B

Note: Values measured on valve alone (no cavity). Pressure drop may change depending on fluid viscosity and temperature.

EXAMPLE ORDER CODE:

CSC 04 C 00 0

Type valve = CSC
Nominal size: 04
Series 0 = std
Options
Adjustment:
C = screw
V = hand wheel
POWER UNITS

HYDRAULIC POWER PACKS

TYPE

CSB

MOUNTING CAVITY

Note: cavities 3, 4 and 6 are present on central manifold type B only.

DIRECT ACTING RELIEF VALVE

Hydraulic symbol

A

B

Main features

<table>
<thead>
<tr>
<th>Max pressure</th>
<th>300 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max flow</td>
<td>15 l/min</td>
</tr>
<tr>
<td>Weight</td>
<td>0.15 Kg</td>
</tr>
</tbody>
</table>

Pressure drop diagram

Note: Values measured on valve alone (no cavity). Pressure drop may change depending on fluid viscosity and temperature.

EXAMPLE ORDER CODE:

CSB 04 C 00 0

Type valve = CSB
Nominal size: 04
Adjustment: C = screw, V = hand wheel
POWER UNITS

HYDRAULIC POWER PACKS

TYPE

VSC01

MOUNTING CAVITY

(5 6 8)

Note: cavities 3, 4 and 6 are present on central manifold type B only.

PRESSURE COMPENSATED FLOW CONTROL VALVE

Hydraulic symbol

Typical application

Controlled flow B → A

Free flow pressure drop A → B

Controlled flow B → A

Free flow pressure drop A → B

Spare part code	Ø X [mm]	Nominal controlled flow [l/min]
VSC0100 | closed | 0
VSC01A | 0,75 | 1
VSC01B | 1 | 2
VSC01C | 1,3 | 3
VSC01D | 1,5 | 4
VSC01E | 1,7 | 5
VSC01F | 1,9 | 6
VSC01H | 2,1 | 8
VSC01L | 2,3 | 10
VSC01M | 2,5 | 12
VSC01N | 3 | 14

Note: nominal controlled flow, measured at 50 bar, may change depending on fluid viscosity and temperature.

Note: pressure drop may change depending on fluid viscosity and temperature

EXAMPLE ORDER CODE:

VSC 01 E 0

Type valve= VSC

Series 0=std

Nominal size: 01

Controlled flow: 00, A, B, C, D, E, F, H, L, M, N
POWER UNITS

HYDRAULIC POWER PACKS

TYPE

VSC04

MOUNTING CAVITY

Note: cavities 3, 4 and 6 are present on central manifold type B only.

PRESSURE COMPENSATED FLOW CONTROL VALVE

Max pressure 250 bar
Max flow 16 l/min
Weight 14 g

Typical application

Controlled flow through X port B ➔ A
Free flow pressure drop A ➔ B

Spare part code Ø X [mm] Nominal controlled flow [l/min]
VSC040001 closed 0
VSC040101 1 1
VSC040201 1.25 2
VSC040301 1.5 3
VSC040401 1.75 4
VSC040601 2 6
VSC040801 2.25 8
VSC041101 2.5 11
VSC041601 3 16

Note: nominal controlled flow, measured at 50 bar, may change depending on fluid viscosity and temperature

Example order code:

VSC 04 02 01

Type valve = VSC
Series 0=std
Nominal size: 04 = Ø12.7 o-ring
Controlled flow: 00, 01, 02, 03, 04, 06, 08, 11, 16

Note: pressure drop may change depending on fluid viscosity and temperature
POWER UNITS

HYDRAULIC POWER PACKS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>VUC20</th>
</tr>
</thead>
</table>

PRESSURE COMPENSATED FLOW CONTROL VALVE

![Diagram of Pressure Compensated Flow Control Valve]

Main features

- **Max pressure**: 350 bar
- **Max flow**: 25 l/min
- **Weight**: 0.1 Kg

EXAMPLE ORDER CODE:

- **Type valve**: VUC
- **Nominal size**: 20
- **Series**: 0=std

Note: Values measured on valve alone (no cavity). Pressure drop may change depending on fluid viscosity and temperature.
POWER UNITS

HYDRAULIC POWER PACKS

TYPE

MSV

PILOT OPERATED TWO-WAY SINGLE LOCKING SOLENOID VALVE

Hydraulic symbol

Note: cavities 3, 4 and 6 are present on central manifold type B only.

EXAMPLE ORDER CODE:

Type valve = MSV

Operation:

30 = normally closed
31 = normally open

Coil voltage:

0000 = no coil (std)
see over table

Options:

0 = no options (std)
E = emergency

Coil thermal insulation Class F - VDE 0585
DIN 43650-A / ISO 4400

 +/- 10% nominal voltage

Main features

Max pressure 250 bar
Max flow 25 l/min
Weight 0.27 Kg (with coil)

Coil part N° Connector part N° Power cons.

<table>
<thead>
<tr>
<th>Coil voltage</th>
<th>Coi part N°</th>
<th>Connector part N°</th>
<th>Power cons.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12DC</td>
<td>COIL-12DC-S</td>
<td>K0</td>
<td>18W</td>
</tr>
<tr>
<td>24DC</td>
<td>COIL-24DC-S</td>
<td>K0</td>
<td>18W</td>
</tr>
<tr>
<td>48DC</td>
<td>COIL-48DC-S</td>
<td>K0</td>
<td>18W</td>
</tr>
<tr>
<td>110RC</td>
<td>COIL-110RC-S</td>
<td>K12</td>
<td>18W</td>
</tr>
<tr>
<td>220RC</td>
<td>COIL-220RC-S</td>
<td>K13</td>
<td>18W</td>
</tr>
<tr>
<td>24/50AC</td>
<td>COIL-24/50AC-S</td>
<td>K0</td>
<td>20VA</td>
</tr>
<tr>
<td>110/50AC</td>
<td>COIL-110/50AC-S</td>
<td>K0</td>
<td>20VA</td>
</tr>
<tr>
<td>220/50AC</td>
<td>COIL-220/50AC-S</td>
<td>K0</td>
<td>20VA</td>
</tr>
</tbody>
</table>

Pressure drop diagram

Note: Values measured on valve alone (no cavity). Pressure drop may change depending on fluid viscosity and temperature.

Power cons.

18W
20VA

 options

E = emergency

Other voltages available on request.

Coil voltage Coil part N° Connector part N° Power cons.

<table>
<thead>
<tr>
<th>Power cons.</th>
<th>18W</th>
<th>20VA</th>
</tr>
</thead>
</table>

Class F - VDE 0585
DIN 43650-A / ISO 4400

Max pressure 250 bar
Max flow 25 l/min
Weight 0.27 Kg (with coil)

Coil thermal insulation Class F - VDE 0585
DIN 43650-A / ISO 4400

 +/- 10% nominal voltage
POWER UNITS

HYDRAULIC POWER PACKS

TYPE

MDV

MOUNTING CAVITY

Note: cavities 3, 4 and 6 are present on central manifold type B only.

DIRECT OPERATED TWO-WAY DOUBLE LOCKING SOLENOID VALVE

Coil voltage	Coil part N°	Connector part N°	Power cons.
12DC | COIL-12DC-D | K0 | 22W |
24DC | COIL-24DC-D | K0 | 22W |
48DC | COIL-48DC-D | K0 | 22W |
110RC | COIL-110RAC-D | K12 | 22W |
220RC | COIL-220RAC-D | K13 | 22W |

You can supply AC voltage to RC coils through proper rectifying bridge connectors (110AC/50Hz to 110RC coils and 220AC/50Hz to 220RC coils). Other voltages available on request.

Pressure drop diagram

Note: Values measured on valve alone (no cavity). Pressure drop may change depending on fluid viscosity and temperature.

EXAMPLE ORDER CODE:

Type valve = MDV

Operation: 30 = normally closed

Coil voltage: 0000 = no coil (std) see over table

Options:
E = emergency (std)
POWER UNITS

HYDRAULIC POWER PACKS

TYPE

CPE

MOUNTING CAVITY

Note: cavities 3, 4 and 6 are present on central manifold type B only.

PILOT OPERATED TWO-WAY SINGLE LOCKING SOLENOID VALVE

Hydraulic symbol

Main features

Max pressure 300 bar
Max flow 25 l/min
Weight 0.15 Kg

Pressure drop diagram

Operating force (daN) on the press button

EXAMPLE ORDER CODE:

CPE 04 P 0

Type valve = CPE
Nominal size: 04
Operation device: P = press button
PLUGS

Type: R75G

Mounting Cavity: 2 3 4

Note: cavities 3, 4 and 6 are present on central manifold type B only.

Type: R74L

Mounting Cavity: 2 3

Note: cavities 3, 4 and 6 are present on central manifold type B only.

Type: R73H

Mounting Cavity: 2 3 4

Note: cavities 3, 4 and 6 are present on central manifold type B only.

Type: R72N

Mounting Cavity: 2 3

Note: cavities 3, 4 and 6 are present on central manifold type B only.
POWER UNITS

HYDRAULIC POWER PACKS

CETOP3 MODULAR MANIFOLDS

Type:

E001

REAR PORTS

Type:

E010

LATERAL PORTS

Important:

The Cetop attachment is on motor side. With AC motor frames bigger than 71, always add a spacer manifold E004 (see next page) below the Cetop manifold to avoid interference between the Cetop valve and the motor.

Note: to add external manifolds to PPC assembly code, just add their code at the end of PPC code. Ex: PPC-0,8 12DC-A-G108-D/200-G-1,5L+E004+E010
POWER UNITS

HYDRAULIC POWER PACKS

MODULAR MANIFOLD

Type: E004

SPACING ELEMENT

Type: E005

90° ROTATION MANIFOLD

Type: E030

MANIFOLD FOR MSV AND MDV VALVES

Note: code does not include the MSV or MDV solenoid valve.
CETOP3 MANIFOLDS WITH PILOT OPERATED CHECK VALVES

Type:

E101

DOUBLE PILOT CHECK

Type:

E102

SINGLE PILOT OPERATED CHECK "A"

Note: code does not include Cetop solenoid valves.
POWER UNITS

HYDRAULIC POWER PACKS

CETOP3 MANIFOLDS WITH PILOT OPERATED CHECK VALVES

Type: E103

SINGLE PILOT OPERATED CHECK "B"

Hydraulic symbol

Note: code does not include Cetop solenoid valves.
POWER UNITS

HYDRAULIC POWER PACKS

CETOP 3 SOLENOID OPERATED VALVE

EXAMPLE ORDER CODE:

DM 01 24DC

DM = single solenoid valve
DD = double solenoid valve

Hydraulic scheme

<table>
<thead>
<tr>
<th>Code</th>
<th>Scheme</th>
<th>Code</th>
<th>Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM01</td>
<td></td>
<td>DM06</td>
<td></td>
</tr>
<tr>
<td>DM02</td>
<td></td>
<td>DM07</td>
<td></td>
</tr>
<tr>
<td>DM03</td>
<td></td>
<td>DM08</td>
<td></td>
</tr>
<tr>
<td>DM04</td>
<td></td>
<td>DM10</td>
<td></td>
</tr>
<tr>
<td>DM05</td>
<td></td>
<td>DM11</td>
<td></td>
</tr>
<tr>
<td>DD01</td>
<td></td>
<td>DD06</td>
<td></td>
</tr>
<tr>
<td>DD02</td>
<td></td>
<td>DD07</td>
<td></td>
</tr>
<tr>
<td>DD03</td>
<td></td>
<td>DD08</td>
<td></td>
</tr>
<tr>
<td>DD04</td>
<td></td>
<td>DD09</td>
<td></td>
</tr>
<tr>
<td>DD05</td>
<td></td>
<td>DD10</td>
<td></td>
</tr>
</tbody>
</table>

Coil voltage:

Standard voltages for solenoid valves: 12DC, 24DC, 48DC, 110 RAC, 220RAC, 115/50AC, 230/50AC.
For others voltages ask to our technical office.
Integral AC motors

Integral motor: The AC motor is directly flanged on the unit central manifold. A single coupling -see below- can suit all sizes and powers. We suggest to adopt these advanced motors because of these peculiar advantages over standard B14 AC motors and because they are designed specifically for use on mini power packs, thus offering an higher power density.

AC integral motor

- Power [kW]:
 - 0.75
 - 1.1
 - 1.5
 - 1.8
 - 2.2
 - 3
 - 3*

- Frame size:
 - 80
 - 90

- Duty factor:
 - S3 = intermittent duty

Power [kW]:

- Phase: 3 = three phase
- S = single phase
- Poles: 4P = four poles
- 2P = two poles

Coupling spare part code:

- E36100000

A single coupling can be applied on all motor frame sizes. This is also the semi-coupling included in B14 motors mounting kit. The coupling is already included when specifying an integral AC motor in PPC assembly code. When ordering spare motors, the coupling is not included and must be ordered separately.

Integral AC motors

- Above motors are a selection of the most used powers and types, normally available ex-stock. Other power/frame size pairs are available. Ask to our technical office for either intermittent or heavy duty applications.
- Note*: motors for intermittent duty.
- Above drawing is for three phase motors, single phase motors electric box has different shape (since includes capacitors).
B14 AC motors

B14 motors: for market compatibility, any standard B14 AC motor with frame 71, 80, 90 or 100/112 can be mounted. In this case two-pieces couplings and additional adaptor flanges as per tables 40.05.00, 06.00, 07.00 and 08.00 must be mounted.

Motors overall dimensions are not indicated since they can vary substantially depending on the motor brand

B14 standard dimensions

<table>
<thead>
<tr>
<th>MOTOR FRAME SIZE</th>
<th>Typically available power range</th>
<th>ØA</th>
<th>B</th>
<th>ØC</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>Mounting kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>0,25 – 0,37 kW 0,35 – 0,5 HP</td>
<td>14</td>
<td>30</td>
<td>70</td>
<td>85</td>
<td>M6</td>
<td>16</td>
<td>30</td>
<td>5</td>
<td>XB14-71</td>
</tr>
<tr>
<td>80</td>
<td>0,55 – 0,75 kW 0,75 – 1 HP</td>
<td>19</td>
<td>40</td>
<td>80</td>
<td>100</td>
<td>M6</td>
<td>21,5</td>
<td>40</td>
<td>6</td>
<td>XB14-80</td>
</tr>
<tr>
<td>90</td>
<td>1,1 – 1,5 kW 1,5 – 2 HP</td>
<td>24</td>
<td>50</td>
<td>95</td>
<td>115</td>
<td>M8</td>
<td>27</td>
<td>50</td>
<td>8</td>
<td>XB14-90</td>
</tr>
<tr>
<td>100/112</td>
<td>2,2 – 5,5 kW 3 – 7,5 HP</td>
<td>28</td>
<td>60</td>
<td>110</td>
<td>130</td>
<td>M8</td>
<td>31</td>
<td>60</td>
<td>8</td>
<td>XB14-100</td>
</tr>
</tbody>
</table>

PPC B14 motor assembly code

- **Power [kW]**
- **AC** Alternate current
- **Phase:** 3 = three phase
 S = single phase
- **Poles:** 4P = four pole
 2P = two pole
- **Frame size**
- **Duty factor:** - = ED 100% (S1)
 S3 = intermittent duty

Mounting kits spare parts

The B14 mounting kits are made of:
- a semi-coupling E36100000 (the same used for integral AC motors) on pump shaft side
- a semi-coupling on motor shaft side, which is different for any frame size
- an adaptor flange to suit the central manifold, which is also different for any frame size

The mounting kit is already included when specifying a B14 AC motor in PPC assembly code. When ordering spare motors, the relevant mounting kit is not included and must be ordered separately.

A selection of 3 phase 4 pole B14 AC motors

<table>
<thead>
<tr>
<th>MOTOR FRAME SIZE</th>
<th>kW</th>
<th>HP</th>
<th>Weight Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>3</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5,5</td>
<td>35</td>
</tr>
<tr>
<td>112</td>
<td>5,5</td>
<td>7,5</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>7,5</td>
<td>10</td>
<td>43</td>
</tr>
</tbody>
</table>

Above motors are a selection of the most used powers and types. Other power/frame size pairs are available. Ask to our technical office for either intermittent or heavy duty applications.
MOUNTING KIT FOR B14 MOTORS
FRAME SIZE 71

Type:
XB14-71

ADAPTOR
FLANGE

COUPLING

POWER UNITS
HYDRAULIC POWER PACKS
MOUNTING KIT FOR B14 MOTORS
FRAME SIZE 80

Type:
XB14-80

ADAPTOR
FLANGE

COUPLING

Pump side
Motor side
MOUNTING KIT FOR B14 MOTORS
FRAME SIZE 90

Type:
XB14-90

ADAPTOR FLANGE

COUPLING

POWER UNITS
HYDRAULIC POWER PACKS
MOUNTING KIT FOR FRAME 100/112
B14 MOTORS

Type:
XB14-100

ADAPTOR FLANGE

COUPLING

Pump side

Motor side

Type:
XB14-100

COUPLING
RESERVOIRES

Type: 1,5S
VOLUME 1,5L
MATERIAL: STEEL

Type: 2,5S
VOLUME 2,5L
MATERIAL: STEEL
RESERVOIRES

Type: 5S

VOLUME: 5L
MATERIAL: STEEL

Type: 8S

VOLUME: 8L
MATERIAL: STEEL
POWER UNITS

HYDRAULIC POWER PACKS

RESERVOIRES

Type: 10S

VOLUME 10L
MATERIAL: STEEL

Type: 12S

VOLUME 12L
MATERIAL: STEEL
POWER UNITS

HYDRAULIC POWER PACKS

RESERVOIRES

Type:

7LV

VOLUME
15L

MATERIAL:
STEEL

180

220

30

200

110

300
POWER UNITS

HYDRAULIC POWER PACKS

RESERVOIRES

Type:
15LV

VOLUME
15L

MATERIAL:
STEEL

Type: 15LV

VOLUME
15L

MATERIAL:
STEEL

Figure 1: Reservoir Dimensions

- Type: 15LV
- Volume: 15L
- Material: Steel
RESERVOIRES

Type: 20EV

VOLUME 20L

MATERIAL: STEEL

VOLUME 20L

MATERIAL: STEEL
RESERVOIRES

Type:

30LV

VOLUME

30L

MATERIAL:

STEEL
RESERVOIRES

Type: 5P
VOLUME 5L
MATERIAL: PLASTIC

Type: 8P
VOLUME 8L
MATERIAL: PLASTIC

Type: 12P
VOLUME 12L
MATERIAL: PLASTIC
Plastic reservoirs correct mounting when horizontal
ACCESSOIRES

Type: EPD60R
3/8

Series of EPD G3/8” Suction Hoses

Type: E602

90° PVC Fitting for Horizontal Suction Kit

Type: C3415

Filtering Element
90 μm

Available lengths

25
40
80
100
180
200
235
300
350
400
POWER UNITS

HYDRAULIC POWER PACKS

PPC ACCESSOIRES

Code: F

FOOT MOUNTING SUPPORT

![Diagram of Foot Mounting Support]

Code: R81

STEEL TANK ADAPTER

![Diagram of Steel Tank Adapter]
Application Form

Customer Information

<table>
<thead>
<tr>
<th>Company</th>
<th>Phone n°</th>
<th>Fax n°</th>
</tr>
</thead>
</table>

Electric Motor

<table>
<thead>
<tr>
<th>AC</th>
<th>Power Kw</th>
<th>Phases</th>
<th>Poles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kit B14</th>
<th>Frame size</th>
<th>71</th>
<th>80</th>
<th>90</th>
<th>100/112</th>
</tr>
</thead>
</table>

Pump

<table>
<thead>
<tr>
<th>0.8</th>
<th>1.1</th>
<th>1.3</th>
<th>1.6</th>
<th>2.1</th>
<th>2.6</th>
<th>3.2</th>
<th>3.7</th>
<th>4.2</th>
<th>4.8</th>
<th>5.8</th>
<th>7.9</th>
<th>8.8</th>
<th>CC</th>
</tr>
</thead>
</table>

Max Pressure [bar]

<table>
<thead>
<tr>
<th>Adjusted to [bar]</th>
<th>Check valve</th>
</tr>
</thead>
</table>

Solenoid Valve

<table>
<thead>
<tr>
<th>Normally open</th>
<th>Normally closed</th>
<th>Manual override</th>
<th>Other valves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lever operated valve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Button operated valve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hand pump 2cc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Compensated flow regular</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Flow regulator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Return line flow regulator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L/min</td>
</tr>
</tbody>
</table>

Coil [Volts]

| | |
|--------------------||

Oil Tank

<table>
<thead>
<tr>
<th>Material</th>
<th>Steel</th>
<th>Plastic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mounting</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
</tr>
<tr>
<td>V</td>
</tr>
</tbody>
</table>

Sub-plate for cetop 3 valves

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Quantity</th>
<th>Post./rear</th>
<th>Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manometer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gauge isolator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional P line</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional return line</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foot</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Marketing Information

<table>
<thead>
<tr>
<th>Marketing information</th>
<th>Delivery time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quantity

<table>
<thead>
<tr>
<th>Date</th>
<th>Reply until</th>
</tr>
</thead>
</table>

Note:

...
<table>
<thead>
<tr>
<th>No.</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STELO - PISTON ROD</td>
</tr>
<tr>
<td>2</td>
<td>GUARNIZIONE STELO - PISTON ROD SEAL</td>
</tr>
<tr>
<td>3</td>
<td>BOCCOLA - BUSH</td>
</tr>
<tr>
<td>4</td>
<td>TESTATA ANTERIORE - ANTERIOR COVER</td>
</tr>
<tr>
<td>5</td>
<td>GUARNIZIONE AMMORTIZZO - CUSHIONING SEAL</td>
</tr>
<tr>
<td>6</td>
<td>TUBO PROFILATO - TUBE</td>
</tr>
<tr>
<td>7</td>
<td>GUARNIZIONE PISTONE - PISTON SEAL</td>
</tr>
<tr>
<td>8</td>
<td>MAGNETE - MAGNET</td>
</tr>
<tr>
<td>9</td>
<td>PATTINO DI GUIDA - GUIDE RING</td>
</tr>
<tr>
<td>10</td>
<td>PISTONE - PISTON</td>
</tr>
<tr>
<td>11</td>
<td>REGOLAZIONE AMMORTIZZO - CUSHIONING REGULATION</td>
</tr>
<tr>
<td>12</td>
<td>TESTATA POSTERIORE - POSTERIOR COVER</td>
</tr>
</tbody>
</table>

POWER UNITS

HYDRAULIC POWER PACKS

NOTE:

Il Sistema Qualità interno gestisce e controlla ogni processo produttivo secondo il proprio Manuale della Qualità, adottato sistematicamente da tutti gli Enti interni nello svolgimento delle proprie funzioni. Viene così garantito un elevato livello qualitativo di ogni tipologia di prodotto finito.

Particolare attenzione è riposta nel controllo qualità in-process: si suddivide tra il controllo qualitativo-dimensionale su ciascun componente per mezzo di un’attrezzata e computerizzata sala metrologica e la verifica funzionale di ogni singolo prodotto finito.

The Quality System manages and checks each productive process according to its Quality Manual, now systematically adopted in all sectors during the course of their own performances. In this way a high quality standard is guaranteed in each kind of finished goods. Particular attention is put on the quality check during the manufacturing process, which is divided between both qualitative and dimensional check of each article, made by a well-equipped and technological measurement room, and the functional check of each finished goods.